Files
fleet-commander/menus/train_model.py

177 lines
6.7 KiB
Python

import arcade, arcade.gui, threading, io, os, time
from utils.constants import button_style, MODEL_SETTINGS, monitor_log_dir
from utils.preload import button_texture, button_hovered_texture
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from io import BytesIO
from PIL import Image
from stable_baselines3 import PPO
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.logger import configure
from utils.rl import SpaceInvadersEnv
class TrainModel(arcade.gui.UIView):
def __init__(self, pypresence_client):
super().__init__()
self.pypresence_client = pypresence_client
self.pypresence_client.update(state="Model Training")
self.anchor = self.add_widget(arcade.gui.UIAnchorLayout(size_hint=(1, 1)))
self.box = self.anchor.add(arcade.gui.UIBoxLayout(space_between=10))
self.settings = {
setting: data[0] # default value
for setting, data in MODEL_SETTINGS.items()
}
self.labels = {}
self.training = False
self.training_text = ""
self.last_progress_update = time.perf_counter()
def on_show_view(self):
super().on_show_view()
self.show_menu()
def main_exit(self):
from menus.main import Main
self.window.show_view(Main(self.pypresence_client))
def show_menu(self):
self.back_button = self.anchor.add(arcade.gui.UITextureButton(texture=button_texture, texture_hovered=button_hovered_texture, text='<--', style=button_style, width=100, height=50), anchor_x="left", anchor_y="top", align_x=5, align_y=-5)
self.back_button.on_click = lambda event: self.main_exit()
self.box.add(arcade.gui.UILabel("Settings", font_size=36))
for setting, data in MODEL_SETTINGS.items():
default, min_value, max_value, step = data
label = self.box.add(arcade.gui.UILabel(text=f"{setting.replace('_', ' ').capitalize()}: {default}", font_size=18))
slider = self.box.add(arcade.gui.UISlider(value=default, min_value=min_value, max_value=max_value, step=step, width=self.window.width / 2, height=self.window.height / 25))
slider._render_steps = lambda surface: None
slider.on_change = lambda e, key=setting: self.change_value(key, e.new_value)
self.labels[setting] = label
train_button = self.box.add(arcade.gui.UITextureButton(width=self.window.width / 2, height=self.window.height / 10, text="Train", style=button_style, texture=button_texture, texture_hovered=button_hovered_texture))
train_button.on_click = lambda e: self.start_training()
def change_value(self, key, value):
self.labels[key].text = f"{key.replace('_', ' ').capitalize()}: {self.round_near_int(value)}"
self.settings[key] = self.round_near_int(value)
def start_training(self):
self.box.clear()
self.training = True
self.training_label = self.box.add(arcade.gui.UILabel("No Output yet.", font_size=16, multiline=True, width=self.window.width / 2, height=self.window.height / 2))
self.plot_image_widget = self.box.add(arcade.gui.UIImage(texture=arcade.Texture.create_empty("empty", (1, 1))))
self.plot_image_widget.visible = False
threading.Thread(target=self.train, daemon=True).start()
def on_update(self, delta_time):
if self.training and os.path.exists(os.path.join("training_logs", "progress.csv")) and time.perf_counter() - self.last_progress_update >= 0.5:
self.last_progress_update = time.perf_counter()
try:
progress_df = pd.read_csv(os.path.join("training_logs", "progress.csv"))
except pd.errors.EmptyDataError:
return
progress_text = ""
for key, value in progress_df.items():
progress_text += f"{key}: {round(value.iloc[-1], 6)}\n"
self.training_text = progress_text
if hasattr(self, "training_label"):
self.training_label.text = self.training_text
def round_near_int(self, x, tol=1e-4):
nearest = round(x)
if abs(x - nearest) < tol:
return nearest
return x
def train(self):
os.makedirs(monitor_log_dir, exist_ok=True)
env = Monitor(SpaceInvadersEnv(), filename=os.path.join(monitor_log_dir, "monitor.csv"))
model = PPO(
"MlpPolicy",
env,
n_steps=self.settings["n_steps"],
batch_size=self.settings["batch_size"],
n_epochs=self.settings["n_epochs"],
learning_rate=self.settings["learning_rate"],
verbose=1,
device="cpu",
gamma=self.settings["gamma"],
ent_coef=self.settings["ent_coef"],
clip_range=self.settings["clip_range"],
)
new_logger = configure(
folder=monitor_log_dir, format_strings=["csv"]
)
model.set_logger(new_logger)
model.learn(self.settings["learning_steps"])
model.save("invader_agent")
self.training = False
self.plot_results(os.path.join(monitor_log_dir, "monitor.csv"), os.path.join(monitor_log_dir, "progress.csv"))
def plot_results(self, log_path, loss_log_path):
df = pd.read_csv(log_path, skiprows=1)
fig, axes = plt.subplots(2, 1, figsize=(6, 8), dpi=100)
loss_df = pd.read_csv(loss_log_path)
axes[0].plot(np.cumsum(df['l']), df['r'], label='Reward')
axes[0].set_title('PPO Training: Episodic Reward')
axes[0].set_xlabel('Total Timesteps')
axes[0].set_ylabel('Reward')
axes[0].grid(True)
axes[1].plot(loss_df['time/total_timesteps'], loss_df['train/policy_gradient_loss'], label='Policy Gradient Loss')
axes[1].plot(loss_df['time/total_timesteps'], loss_df['train/value_loss'], label='Value Loss')
axes[1].plot(loss_df['time/total_timesteps'], loss_df['train/explained_variance'], label='Explained Variance')
axes[1].set_title('PPO Training: Loss Functions')
axes[1].set_xlabel('Total Timesteps')
axes[1].set_ylabel('Loss Value')
axes[1].legend()
axes[1].grid(True)
plt.tight_layout()
buffer = BytesIO()
plt.savefig(buffer, format='png')
buffer.seek(0)
plt.close(fig)
plot_texture = arcade.Texture(Image.open(buffer))
self.plot_image_widget.texture = plot_texture
self.plot_image_widget.size_hint = (None, None)
self.plot_image_widget.width = plot_texture.width
self.plot_image_widget.height = plot_texture.height
self.plot_image_widget.visible = True
self.training_text = "Training finished. Plot displayed."