change to template-based shaders, move fractal chooser to menus, add

burning ship and newton fractal, add escape radius to more fractals
This commit is contained in:
csd4ni3l
2025-05-27 21:55:27 +02:00
parent 564ce565a5
commit 22c46778d9
9 changed files with 453 additions and 146 deletions

View File

@@ -1,156 +1,245 @@
import pyglet
from utils.constants import c_for_julia_type
mandelbrot_compute_source = """#version 430 core
newton_coloring = """vec4 getColor(int color_number) {{
vec4 value = vec4(0.0, 0.0, 0.0, 1.0);
if (color_number == 0) {{
value.r = 1.0;
}}
else if (color_number == 1) {{
value.g = 1.0;
}}
else if (color_number == 2) {{
value.b = 1.0;
}}
return value;
}}
"""
polynomial_coloring = """vec4 getColor(int iters) {{
vec4 value = vec4(0.0, 0.0, 0.0, 1.0);
if (iters != u_maxIter) {{
float t = float(iters) / float(u_maxIter);
value.r = 9.0 * (1.0 - t) * t * t * t;
value.g = 15.0 * (1.0 - t) * (1.0 - t) * t * t;
value.b = 8.5 * (1.0 - t) * (1.0 - t) * (1.0 - t) * t;
}}
return value;
}}
"""
fire_coloring = """vec4 getColor(int iters) {{
vec4 value = vec4(0.0, 0.0, 0.0, 1.0);
if (iters != u_maxIter) {{
float t = float(iters) / float(u_maxIter);
value.r = 3.0 * t;
value.g = 2.0 * t * t;
value.b = t * t * t;
}}
return value;
}}
"""
iter_fractal_template = """#version 430 core
uniform int u_maxIter;
uniform vec2 u_resolution;
uniform vec2 u_real_range;
uniform vec2 u_imag_range;
layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
layout(location = 0, rgba32f) uniform image2D img_output;
int mandelbrot({vec2type} c, int maxIter) {
{vec2type} z = {vec2type}(0.0, 0.0);
for (int n = 0; n < maxIter; n++) {
if (dot(z, z) > 4.0) {
return n;
}
z = {vec2type}(
z.x * z.x - z.y * z.y + c.x,
2.0 * z.x * z.y + c.y
);
}
return maxIter;
}
{coloring_func}
{iter_calc_func}
{vec2type} map_pixel({floattype} x, {floattype} y, {vec2type} resolution, {vec2type} real_range, {vec2type} imag_range) {
{vec2type} map_pixel({floattype} x, {floattype} y, {vec2type} resolution, {vec2type} real_range, {vec2type} imag_range) {{
{floattype} real = real_range.x + (x / resolution.x) * (real_range.y - real_range.x);
{floattype} imag = imag_range.x + (y / resolution.y) * (imag_range.y - imag_range.x);
return {vec2type}(real, imag);
}
}}
void main() {
void main() {{
ivec2 texel_coord = ivec2(gl_GlobalInvocationID.xy);
{vec2type} c = map_pixel({floattype}(texel_coord.x), {floattype}(texel_coord.y), u_resolution, u_real_range, u_imag_range);
int iters = mandelbrot(c, u_maxIter);
vec4 value = vec4(0.0, 0.0, 0.0, 1.0);
if (iters != u_maxIter) {
float t = float(iters) / float(u_maxIter);
value.r = 9.0 * (1.0 - t) * t * t * t;
value.g = 15.0 * (1.0 - t) * (1.0 - t) * t * t;
value.b = 8.5 * (1.0 - t) * (1.0 - t) * (1.0 - t) * t;
}
{vec2type} pos = map_pixel({floattype}(texel_coord.x), {floattype}(texel_coord.y), u_resolution, u_real_range, u_imag_range);
int iters = calculate_iters(pos);
vec4 value = getColor(iters);
imageStore(img_output, texel_coord, value);
}
}}
"""
sierpinsky_carpet_compute_source = """#version 430 core
uniform int u_depth;
uniform int u_zoom;
uniform vec2 u_center;
layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
layout(location = 0, rgba32f) uniform image2D img_output;
void main() {
void main() {{
{vec2type} centered = {vec2type}(gl_GlobalInvocationID.xy) - u_center;
{vec2type} zoomed = centered / u_zoom;
{vec2type} final_coord = zoomed + u_center;
ivec2 coord = ivec2(final_coord);
bool isHole = false;
for (int i = 0; i < u_depth; ++i) {
if (coord.x % 3 == 1 && coord.y % 3 == 1) {
for (int i = 0; i < u_depth; ++i) {{
if (coord.x % 3 == 1 && coord.y % 3 == 1) {{
isHole = true;
break;
}
}}
coord /= 3;
}
}}
vec4 color = isHole ? vec4(0, 0, 0, 1) : vec4(1, 1, 1, 1);
imageStore(img_output, ivec2(gl_GlobalInvocationID.xy), color);
}
}}
"""
julia_template = """#version 430 core
uniform int u_maxIter;
uniform vec2 u_resolution;
uniform vec2 u_real_range;
uniform vec2 u_imag_range;
layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
layout(location = 0, rgba32f) uniform image2D img_output;
{vec2type} map_pixel({floattype} x, {floattype} y, {vec2type} resolution, {vec2type} real_range, {vec2type} imag_range) {
{floattype} real = real_range.x + (x / resolution.x) * (real_range.y - real_range.x);
{floattype} imag = imag_range.x + (y / resolution.y) * (imag_range.y - imag_range.x);
return {vec2type}(real, imag);
}
void main() {
ivec2 texel_coord = ivec2(gl_GlobalInvocationID.xy);
float R = {escape_radius};
int n = {julia_n};
{vec2type} c = {vec2type}{julia_c};
{vec2type} z = map_pixel({floattype}(texel_coord.x), {floattype}(texel_coord.y), u_resolution, u_real_range, u_imag_range);
normal_julia_calc = """int calculate_iters({vec2type} z) {{
int iters = 0;
{julia_calc}
vec4 value = vec4(0.0, 0.0, 0.0, 1.0);
if (iters != u_maxIter) {
float t = float(iters) / float(u_maxIter);
value.r = 9.0 * (1.0 - t) * t * t * t;
value.g = 15.0 * (1.0 - t) * (1.0 - t) * t * t;
value.b = 8.5 * (1.0 - t) * (1.0 - t) * (1.0 - t) * t;
}
imageStore(img_output, texel_coord, value);
}
"""
normal_julia_calc = """while (z.x * z.x + z.y * z.y < R*R && iters < u_maxIter)
{
float R = {escape_radius};
int n = {multi_n};
{vec2type} c = {vec2type}{julia_c};
while (dot(z, z) < R * R && iters < u_maxIter){{
{floattype} xtemp = z.x * z.x - z.y * z.y;
z.y = 2 * z.x * z.y + c.y;
z.x = xtemp + c.x;
iters = iters + 1;
}
iters++;
}}
return iters;
}}
"""
multi_julia_calc = """while ((z.x * z.x + z.y * z.y) < R*R && iters < u_maxIter) {
{floattype} xtmp = pow((z.x * z.x + z.y * z.y), (n / 2)) * cos(n * atan(z.y, z.x)) + c.x;
z.y = pow((z.x * z.x + z.y * z.y), (n / 2)) * sin(n * atan(z.y, z.x)) + c.y;
z.x = xtmp;
multi_julia_calc = """int calculate_iters(float z) {{
int iters = 0;
float R = {escape_radius};
float n = float({multi_n});
float c = float({julia_c});
iters = iters + 1;
}
while (dot(z, z) < R * R && iters < u_maxIter) {{
float r = length(z);
float theta = atan(z.y, z.x);
float r_pow = pow(r, n);
z = vec2(r_pow * cos(n * theta), r_pow * sin(n * theta)) + c;
iters++;
}}
return iters;
}}
"""
mandelbrot_calc = """int calculate_iters({vec2type} c) {{
int iters = 0;
{vec2type} z = {vec2type}(0.0, 0.0);
float R = {escape_radius};
while (dot(z, z) < R * R && iters < u_maxIter) {{
z = {vec2type}(
z.x * z.x - z.y * z.y + c.x,
2.0 * z.x * z.y + c.y
);
iters++;
}}
return iters;
}}
"""
multibrot_calc = """int calculate_iters(vec2 c) {{
int iters = 0;
vec2 z = vec2(0.0);
float n = {multi_n};
float R = {escape_radius};
while (dot(z, z) < R * R && iters < u_maxIter) {{
float r = length(z);
float theta = atan(z.y, z.x);
float r_n = pow(r, n);
float theta_n = n * theta;
z = r_n * vec2(cos(theta_n), sin(theta_n)) + c;
iters++;
}}
return iters;
}}
"""
burning_ship_calc = """int calculate_iters({vec2type} c) {{
int iters = 0;
{vec2type} z = {vec2type}(0.0, 0.0);
float R = {escape_radius};
while (dot(z, z) < R * R && iters < u_maxIter) {{
{floattype} xtemp = z.x * z.x - z.y * z.y + c.x;
z.y = abs(2.0 * z.x * z.y) + c.y;
z.x = xtemp;
iters++;
}}
return iters;
}}
"""
newton_fractal_calc = """vec2 cmul(vec2 a, vec2 b) {{
return vec2(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
}}
vec2 cdiv(vec2 a, vec2 b) {{
float denom = b.x * b.x + b.y * b.y;
return vec2((a.x * b.x + a.y * b.y) / denom, (a.y * b.x - a.x * b.y) / denom);
}}
vec2 cpow(vec2 z, int power) {{
vec2 result = vec2(1.0, 0.0);
for (int i = 0; i < power; ++i) {{
result = cmul(result, z);
}}
return result;
}}
vec2 func(vec2 z) {{
return cpow(z, 3) - vec2(1.0, 0.0);
}}
vec2 derivative(vec2 z) {{
return 3.0 * cmul(z, z);
}}
int calculate_iters(vec2 z) {{
float tolerance = 0.000001;
vec2 roots[3] = vec2[](
vec2(1, 0),
vec2(-0.5, 0.866025404),
vec2(-0.5, -0.866025404)
);
for (int iters = 0; iters < u_maxIter; iters++) {{
z -= cdiv(func(z), derivative(z));
for (int i = 0; i < 3; i++) {{
vec2 difference = z - roots[i];
if (abs(difference.x) < tolerance && abs(difference.y) < tolerance) {{
return i;
}}
}}
}}
return -1;
}}
"""
def create_sierpinsky_carpet_shader(width, height, precision="single"):
shader_source = sierpinsky_carpet_compute_source
if precision == "single":
shader_source = shader_source.replace("{vec2type}", "vec2").replace("{floattype}", "float")
elif precision == "double":
shader_source = shader_source.replace("{vec2type}", "dvec2").replace("{floattype}", "double")
else:
raise TypeError("Invalid Precision")
replacements = {
"vec2type": "dvec2" if precision == "double" else "vec2",
"floattype": "double" if precision == "double" else "float"
}
shader_source = shader_source.format_map(replacements)
shader_program = pyglet.graphics.shader.ComputeShaderProgram(shader_source)
@@ -161,27 +250,40 @@ def create_sierpinsky_carpet_shader(width, height, precision="single"):
return shader_program, sierpinsky_carpet_image
def create_julia_shader(width, height, precision="single", escape_radius=2, julia_type="Classic swirling", julia_n=2):
shader_source = julia_template
def create_iter_calc_shader(fractal_type, width, height, precision="single", multi_n=2, escape_radius=2, julia_type="Classic swirling"):
shader_source = iter_fractal_template
if julia_n == 2:
shader_source = shader_source.replace("{julia_calc}", normal_julia_calc)
replacements = {
"multi_n": str(multi_n),
"julia_c": str(c_for_julia_type[julia_type]),
"escape_radius": str(escape_radius),
"vec2type": "dvec2" if int(multi_n) == 2 and precision == "double" else "vec2",
"floattype": "double" if int(multi_n) == 2 and precision == "double" else "float"
}
if precision == "single":
shader_source = shader_source.replace("{vec2type}", "vec2").replace("{floattype}", "float")
elif precision == "double":
shader_source = shader_source.replace("{vec2type}", "dvec2").replace("{floattype}", "double")
replacements["coloring_func"] = polynomial_coloring.format_map(replacements)
else:
shader_source = shader_source.replace("{julia_calc}", multi_julia_calc)
shader_source = shader_source.replace("{vec2type}", "vec2").replace("{floattype}", "float") # pow and atan only support floats
if fractal_type == "mandelbrot":
if int(multi_n) == 2:
replacements["iter_calc_func"] = mandelbrot_calc.format_map(replacements)
else:
replacements["iter_calc_func"] = multibrot_calc.format_map(replacements)
shader_source = shader_source.replace("{julia_n}", str(julia_n))
elif fractal_type == "julia":
if int(multi_n) == 2:
replacements["iter_calc_func"] = normal_julia_calc.format_map(replacements)
else:
replacements["iter_calc_func"] = multi_julia_calc.format_map(replacements)
julia_c = c_for_julia_type[julia_type]
shader_source = shader_source.replace("{julia_c}", str(julia_c))
elif fractal_type == "burning_ship":
replacements["coloring_func"] = fire_coloring.format_map(replacements)
replacements["iter_calc_func"] = burning_ship_calc.format_map(replacements)
shader_source = shader_source.replace("{escape_radius}", str(escape_radius))
elif fractal_type == "newton_fractal":
replacements["coloring_func"] = newton_coloring.format_map(replacements)
replacements["iter_calc_func"] = newton_fractal_calc.format_map(replacements)
shader_source = shader_source.format_map(replacements)
shader_program = pyglet.graphics.shader.ComputeShaderProgram(shader_source)
@@ -191,23 +293,3 @@ def create_julia_shader(width, height, precision="single", escape_radius=2, juli
julia_image.bind_image_texture(unit=uniform_location)
return shader_program, julia_image
def create_mandelbrot_shader(width, height, precision="single"):
shader_source = mandelbrot_compute_source
if precision == "single":
shader_source = shader_source.replace("{vec2type}", "vec2").replace("{floattype}", "float")
elif precision == "double":
shader_source = shader_source.replace("{vec2type}", "dvec2").replace("{floattype}", "double")
else:
raise TypeError("Invalid Precision")
shader_program = pyglet.graphics.shader.ComputeShaderProgram(shader_source)
mandelbrot_image = pyglet.image.Texture.create(width, height, internalformat=pyglet.gl.GL_RGBA32F)
uniform_location = shader_program['img_output']
mandelbrot_image.bind_image_texture(unit=uniform_location)
return shader_program, mandelbrot_image