Files
grass_touching_captcha/jina.py

49 lines
1.6 KiB
Python

from constants import JINA_URL, JINA_HEADERS, WORD_TO_COMPARE
import requests, dotenv, os, sys, json, numpy as np
def get_embedding(input: list):
headers = JINA_HEADERS
if os.path.exists(".env"):
dotenv.load_dotenv(".env")
if not "JINA_TOKEN" in os.environ:
print("Jina Token not found, exiting...")
sys.exit(1)
headers["Authorization"] = f"Bearer {os.environ['JINA_TOKEN']}"
data = {
"model": "jina-embeddings-v3",
"task": "text-matching",
"input": input
}
response = requests.post(JINA_URL, headers=JINA_HEADERS, json=data)
return [jina_object["embedding"] for jina_object in response.json()["data"]]
def get_grass_touching_similarity(image_url):
if os.path.exists("compared_word_emb.json"):
with open("compared_word_emb.json", "r") as file:
grass_word_embedding = json.load(file)
grass_image_embedding = get_embedding([{"image": image_url}])
else:
grass_image_embedding, grass_word_embedding = get_embedding([{"image": image_url}, {"text": WORD_TO_COMPARE}])
with open("compared_word_emb.json", "w") as file:
file.write(json.dumps(grass_word_embedding))
grass_image_embedding = np.array(grass_image_embedding)
grass_word_embedding = np.array(grass_word_embedding)
dot_product = np.dot(grass_image_embedding, grass_word_embedding)
grass_image_mag = np.linalg.norm(grass_image_embedding)
grass_word_mag = np.linalg.norm(grass_word_embedding)
cosine_similarity = dot_product / (grass_image_mag * grass_word_mag)
return cosine_similarity